5th Meeting of the COMCEC Transport and Communications Working Group

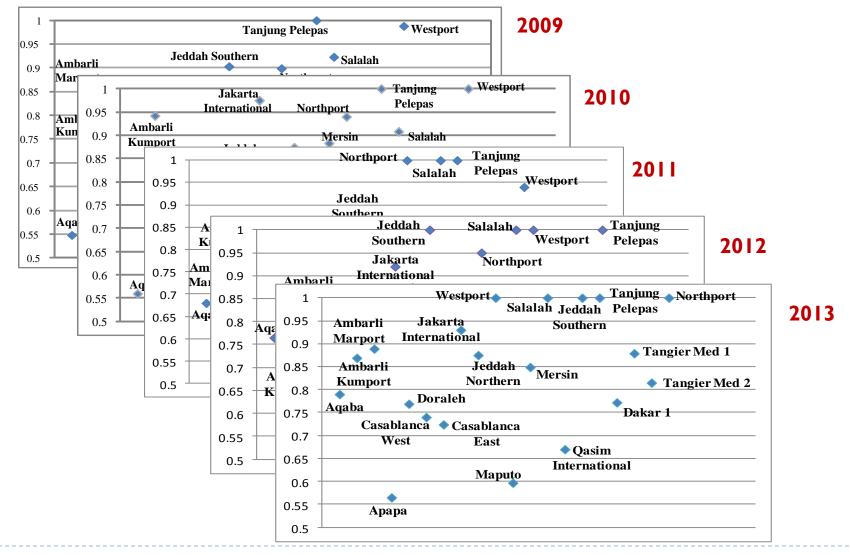
Assessing Port Efficiency in OIC Member States

Dr. Khalid Bichou

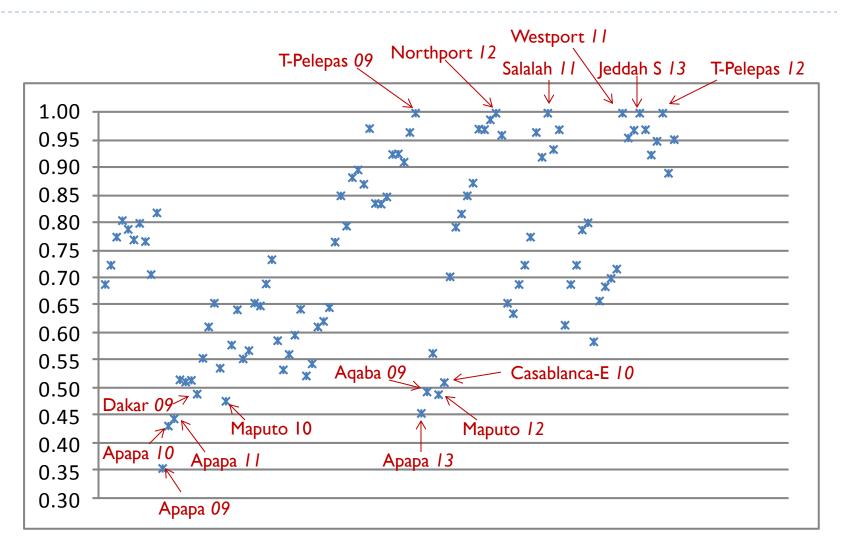
Ports and Transport Logistics Advisor, K Bichou & Associates Ltd PORTeC Research Director & Visiting Chair, Imperial College London

Why Assessing OIC Ports' Efficiency

- To measure and compare productive efficiency of selected OIC ports
- To benchmark OIC port efficiency against that of international best practice
- To uncover and understand any underlying factors behind OIC ports' (in)efficiency
- To track potential shifts of productive efficiency over time
- To test convergence or divergence of productive efficiency across specific port groups
- To decompose and analyse sources of efficiency, e.g. technical v. scale v. Technology


	Country	Port	Region	Туре	
OIC/ COMCEC selected ports	Senegal	Dakar	African group	Gateway	
	Djibouti	Doraleh	African group	Transhipment & Transit	
	Nigeria	Lagos	African group	Gateway	
	Mozambique	Maputo	African group	Gateway & Transit	
	Morocco	Casablanca	Arab group	Gateway	
		Tangiers Med	Arab group	Transhipment	
	Jordan	Aqaba	Arab group	Gateway & Transit	
	Saudi Arabia	Jeddah	Arab group	Gateway & Transhipment	
	Oman	Salalah	Arab group	Transhipment	
	Turkey	Mersin	Asian group	Gateway	
		Ambarli	Asian group	Gateway	
	Malaysia	Tanjung Pelepas	Asian group	Transhipment	
		Port Klang	Asian group	Gateway & Transhipment	
	Indonesia	Tanjung Priok	Asian group	Gateway	
	Pakistan	Port Qasim	Asian group	Gateway	
	Singapore	Singapore	South East Asia	Transhipment	
Referen ce Ports	Netherlands	Rotterdam	North Europe	Gateway & Transit	
	China	Hong Kong	East Asia	Gateway	
		Shenzhen	East Asia	Gateway	

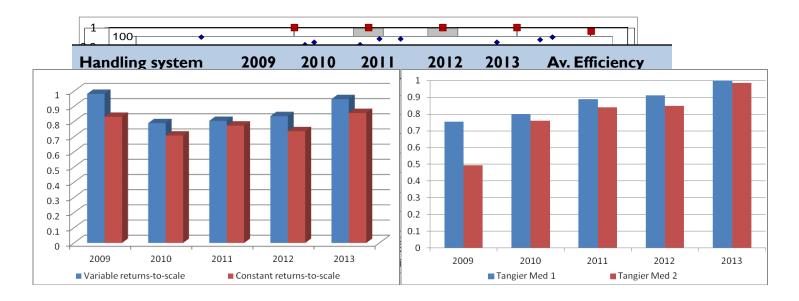
Data and Variables


- ✓ 12 purposefully selected ports from OIC countries, plus 4 best in-class international ports, resulting into 26 container terminals (20 OIC and 6 reference ports)
- ✓ 5-year time frame (2009-2013)...resulting into a panel dataset of 130 terminal-DMUs
- \checkmark Use of engineering standards and weighted indices in variable definition
- ✓ Use DEA to estimate port efficiency under cross-sectional and panel data analysis
- \checkmark Use MPI to track productive efficiency and decompose sources of efficiency

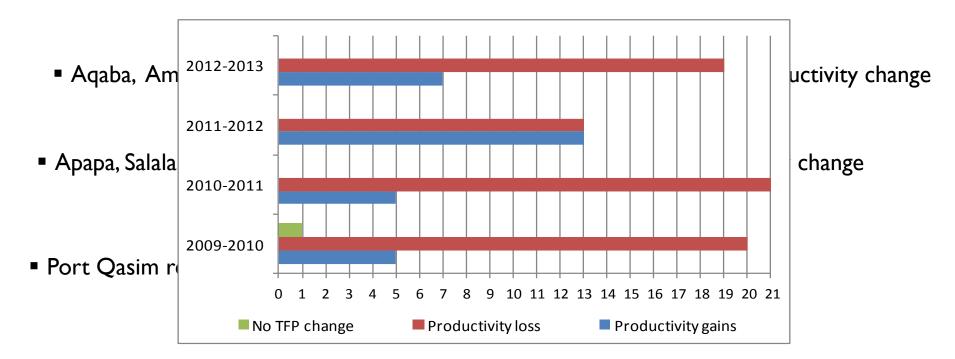
Variable	Minimum	Maximum	Mean	Standard Deviation
Terminal area (1000 m²)	105	2650	730	505
Maximum Draft	10	18	14	2
LOA	305	4875	1515	993
STS-crane index	2	390	55	57
Yard stacking index	6	212	35	35
Internal trucks and vehicles	2	390	55	57
Gates	3	37	10	7
Terminal throughput (1000 TEU)	350	9600	1526	1465

Efficiency Results for OIC Ports: Cross-Sectional Analysis

Efficiency Results for OIC Ports: Panel-Data Analysis

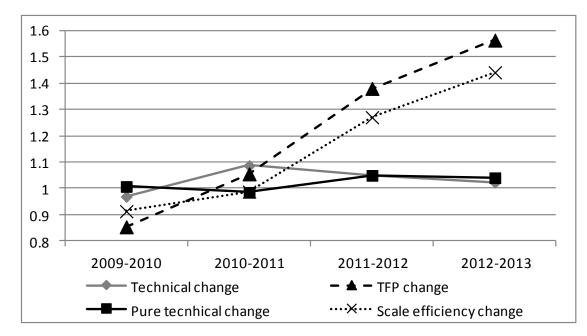

Efficiency Results for OIC and Reference Ports: Panel-Data Analysis

- When adding the 6 reference ports to the terminal dataset, the average efficiency of OIC ports drops between 10-15%.
- Even tough, the results mirror those of the cross-sectional analysis with Apapa-2009 the least efficient. Other OIC ports (Maputo-2010, Dakar-2009, Casablanca East-2010) also show particularly low efficiency scores.
- The 100% efficient ports are those of Hong Kong International (HIT), Singapore (PSA), Tanjung Pelepas (PTP), and Shenzhen (YIT).
- Northport, Westport and Salalah depict an equally high performance as the one set by reference international ports


Analysis of Efficiency by Terminal Groups

- Institutional structures and port efficiency
- Traffic type and port efficiency

- Technological / handling systems and port efficiency
- Size and incremental investment and port efficiency



Regressing average productivity change for OIC ports over all pair-years.

Productivity Change Analysis: Efficiency Decomposition

Decomposing total factor productivity (TFP) into pure, scale, and technology components

- TFP and its sub-categories do not all follow similar productivity trends
- Average pure efficiency change has been flat across all observation periods
- TFP and scale efficiency changes followed same trend upward trends
- Technological change followed a different pattern from other indices

D

Productivity Change Analysis by Terminal Group

- Private-sector ports do not exhibit a similar TFP change to that of public sector ports.
- Private-sector ports show higher technology change to that of public sector ports
- Gateway ports do not exhibit a similar TFP change to that of transhipment ports.
- Gateway ports show higher scale change to that of transhipment ports.
- Large scale ports show up to 50% more productivity change than that of small ports
- Large scale ports exhibit a similar TFP change to that of transhipment ports.

Analysis of Logistics Trade Efficiency

- Relying on data from global indices: LSCI, LPI, and trading across borders indicators.
- LSCI analysis shows Malaysia, Egypt, Morocco, Saudi Arabia and Turkey well connected to global shipping networks
- Countries lest connected are Qatar, Guinea Bissau, Guyana, Brunei, Iran, Iraq, Guinea, Mauritania, Comoros, Libya, Algeria, Tunisia, Maldives, Kuwait, Bangladesh, & Mozambique.
- LPI analysis shows Malaysia, Turkey, Saudi Arabia, Indonesia, Morocco, and Oman come on top of the rankings; while Djibouti and Mozambique come at the bottom.
- OF LPI components, the quality of infrastructure, ease of shipments, and timeliness; those seem to be highly correlated to port performance.
- Trading across border indicators show the exorbitant time lag and trade cost imposed on landlocked OIC countries.
- Analysis also shows trade and export costs in Mozambique, Nigeria and Senegal can be twice as much as those in Malaysia, Morocco, and Turkey.

Six Main Performance and Policy Recommendations

- I. Compile and Publish Detailed Port KPIs
- 2. Conduct Port Performance and Yardstick Benchmarking
- 3. Improve Port Performance through Competition and PSP
- 4. Incorporate Performance Requirements in Concession Agreements
- 5. Upgrade Port Assets and Invest in Technology to Improve Port Productivity
- 6. Improve Trade Logistics Efficiency to Reduce Port Costs and Delays

THANK YOU

Dr. Khalid BICHOU

<u>Email</u>:

khalid.bichou@googlemail.com info@bichouconsulting.com k.bichou@imperial.ac.uk

Web:

www.bichouconsulting.com www.imperial.ac.uk/port operations www.gpra.info