Dr. İsmail Çağrı Özcan

ESCARUS

[TSKB Sustainability Consultancy]

20th Meeting of the COMCEC TCWG

Measuring the Environmental Impacts of Transport Infrastructures in OIC Member Countries Project:

The United States Case Study

03.05.2023

Measuring the Environmental Impacts of Transport Infrastructures in OIC Member Countries Project

Contents

01

A Quick Look at the Transport-Environment Linkage in the US The government agencies involved

03

04

The major guidelines, handbooks, programs, and methodologies

The current efforts to deal with the environmental effects

A Quick Look at the Transport-Environment Linkage in the US

A Quick Look at the Transport-Environment Linkage in the US

US Energy Use by Sector (2015)

Energy Use by Mode of Transportation (2014)

A Quick Look at the Transport-Environment Linkage in the US

CO2 Greenhouse Gas Emissions by Mode: 1990-2014

The government agencies involved

The government agencies involved

Government Agency	Task/Role/Activities		
Federal Aviation Administration	Environmental Review Process for Licensed/Permitted Commercial Space Transportation Activities		
	Environmental Assessments		
	Environmental Impact Statements		
	Air Quality		
	Noise		
	Alternative Fuel Corridors		
Federal Highways Administration	Bicycle and Pedestrian Program		
	Sustainable Transportation (Energy and emissions)		
	Environmental Justice		
	Natural Environment		
Federal Bailroad Administration	Environmental Assessments / Environmental Impact Statements		
	Locomotive Emissions Regulation		
Endoral Transit Administration	Environmental Assessment		
rederal mansic Administration	Environmental Impact Statement		
United States Maritime Administration	International Environmental Standards and Regulations		
Onited States Mantime Auministration	Carbon Emissions and Energy Conservation		

The major guidelines, handbooks, programs, and methodologies

The major guidelines, handbooks, programs, and methodologies

GHG Tool	Developer/Sponsor Agency	Year of Inception/Update1
Emission Factor Models/Tools		
MOVES	U.S. EPA	2015 (update)
<u>EMFAC</u>	CARB	2017 (update)
GREET	Argonne National Labs	2017 (update)
VISION	Argonne National Labs	2017 (apdate)
Mobile Combustion Version 2.6	WRI	2017 (upu te)
Emission Factors from Cross-Sector Tools spreadsheet	WRI	2017 update)
Inventory and Forecast Accounting/Support Tools		
	ICF Intl.	2010
		Ungoing
	U.S. EPA	2018 (update)
FAILWAIS		2000+ updates
Tools to Evaluate Agency Construction Maintenance and Operations Activities	U.S. EFA	2018 (upuate)
Infrastructure Carbon Estimator	FHWA/MnDOT	2010/2019 (update)
Pavement Life-cycle Assessment Tool (PaLATE)	UC Berkeley	2013
Greenhouse-Gas Assessment Spreadsheet for Capital Projects (GASCAP)	Rutgers University for New Jersey DV1	2014
Inventory of Carbon and Energy (ICE)	Circular Ecology	2005
Waste Reduction Model (WARM)	U.S. EPA	2016
U.S. Environmentally Extended Input-Output Model (USEEIO)	U.S. EPA	Ongoing
Smart Location Calculator	U.S. EPA	2017
Construction Carbon Calculator G4C	Good Company	
General GHG, Energy, and VMT Reduction Strategy Analysis Tools		
VisionEval	Dreg in DOT and FHWA	Ongoing
Energy and Emissions Reduction Policy Analysis Tool (EERPAT)	FYWA	2016
Rapid Policy Analysis Tool (RPAT)	Strategic Highway Research Program 2 (SHRP 2)	2015
Regional Strategic Planning Model (RSPM)	Uregon DUI	2014
Impacts 2050	NUHRP Calturant	2014 2017 (undete)
Sbi Grant Programs Calculator Toolkit		2017 (update)
CCAP Transportation Emissions Guidebook Emissions Calculator	CCAP	2007
Climate Action for Urban Sustainability	World Bank	2007
Limited Focus/Strategy-Specific Analysis Tools		2017
Envision Tomorrow	Fregonese Associates Inc.	2018 (update)
CommunityViz	City Explained, Inc.	2018 (update)
UrbanFootprint	Calthorpe Analytics	2018 (update)
Sketch7	Sacramento Area Council of Governments	2012
Conserve by Bicycling and Walking Benefits Calculator	Florida DOT	2009
Transit Greenhouse Gas Emissions Estimator	U.S. DOT	2016
Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET)	Argonne National Lab	2017 (update)
Heavy-Duty Vehicle Emissions Calculator (HDVEC)	Argonne National Lab	2017
Diesel Emissions Quantifier (DEQ)	U.S. EPA	2018 (update)
Market Acceptance of Advanced Automotive Technologies (MA3T)	Oak Ridge National Lab	2019 (update)
Other Tools		
Infrastructure Voluntary Evaluation Sustainability Tool (INVEST)	FHWA	2018 (update)
Greenhouse Gas Equivalencies Calculator	U.S. EPA	2017 (update)
9		

Congestion Mitigation and Air Quality Improvement (CMAQ) Program

- 1. Adaptive Traffic Control Systems (ATCS)
- 2. Alternative Fuel Vehicles and Infrastructure
- 3. Bicycle and Pedestrian Improvements
- 4. Carpooling and Vanpooling
- 5. Congestion Reduction and Traffic Flow Improvements
- 6. Diesel Idle Reduction Strategies
- 7. Diesel Truck and Engine Retrofit & Replacement
- 8. Dust Mitigation
- 9. Electronic Open-Road Tolling (EORT)
- 10. Electric Vehicles and EV Charging Infrastructure
- 11. Locomotive & Marine Engine Retrofit and Replacement Tool
- 12. Managed Lanes
- 13. Non-Road Construction and Intermodal Equipment
- 14. Transit Bus Upgrades & System Improvements
- 15. Transit Bus Service and Fleet Expansion
- **10** 16. Travel Advisories

Congestion Mitigation and Air Quality Improvement (CMAQ) Program: Calculation of Emission Reductions of a

Bicycle and Pedestrian Improvements Program

CMAQ Emissions Calculator Toolkit	Bicycle and Pedestrian Improvements					
	This calculator will estimate the reduction in emissions resulting from improvements to bicycle and pedestrian infrastructure and associated mode shift from passenger vehicles to bicycling or walking, including but not limited to sidewalks, dedicated bicycle infrastructure, improved wayfinding, mid-block crossing installations, bike share systems, and bike parking improvements.					
Navigator		INPUT		User Guide		
Bicycle and Pedestrian Improvements						
	(1) What is your project evaluation year?	- Select from list -		Reset Interface		
	 (2) Estimate the shift in daily motorized paily Passenge Before (3a) Select the data type used for entering Trip Distance Source Select from list - (3b) If you selected "Average" above, entering Typical Trip Distance (miles one way) 	After Change After Change g the typical one-way trip distance of passenger vehicles below <-FillNational Values er the typical one-way trip distance. If you selected "Distribution Distribution of Trip Distances (daily fra x < 1 1 ≤ x < 2 2 ≤ x < 3	ycle and pedestrian projection" above, enter the typ action per mileage bin) $3 \le x \le 4$ $4 \le x \le 5$	ct. ical distribution of one-way trip distances.		
		OUTPUT Calculate Output				
		Pollutant	Total	*Units in kg/day unless otherwise noted		
		Carbon Monoxide (CO)	0,000			
		Particulate Matter <2.5 μm (PM _{2.5})	0,000			
		Particulate Matter <10 μm (PM ₁₀)	0,000			
		Nitrogen Oxide (NOx) 0,000				
		Volatile Organic Compounds (VOC)	0,000			
		Carbon Diovide (CO.)	0.000			
		Carbon Dioxide Equivalent (CO ₂ e)	0,000			
		Total Energy Consumption (MMBTU/day)	0,000			

Congestion Mitigation and Air Quality Improvement (CMAQ) Program: Calculation of Emission

Reductions of a Bicycle and Pedestrian Improvements Program

Example

Assume that a local government proposes the construction of a protected bicycle infrastructure to shift a part of the motorized trips to bicycle use and walking. The parameters of a proposed program are as follows:

- Evaluation year: 2030
- Total daily work trips: 65,000
- Estimated modal shift: 10%
- Percentage of personal car use: 95%
- Trip distance source: Distribution
- Distribution of Typical trip distance: x < 1 = 33%; $1 \le x < 2$ = 23%; $2 \le x < 3 = 28\%$; $3 \le x < 4 = 14\%$; $4 \le x \le 5 = 2\%$
- Typical trip distance Passenger vehicles: 1.79 mi (derived from the distribution above)

Clicking the "Calculate Output" button outputs the table at the right hand-side.

Emission Reductions of the Proposed Bicycle and Pedestrian Improvements Program

Pollutant	Total
Carbon Monoxide (CO)	26,021
Particulate Matter <2.5 μm (PM _{2.5})	0,101
Particulate Matter <10 μm (PM ₁₀)	0,491
Nitrogen Oxide (NOx)	0,846
Volatile Organic Compounds (VOC)	0,898
Carbon Dioxide (CO ₂)	3630,685
Carbon Dioxide Equivalent (CO ₂ e)	3648,268
Total Energy Consumption (MMBTU/day)	49,054

Congestion Mitigation and Air Quality Improvement (CMAQ) Program: Calculation of Emission Reductions of a Carpooling and Vanpooling Program

Questions or Feedback? CMAQ_toolkit_help@dot.gov

Carpooling and Vanpooling

This tool provides emission reduction estimates from carpooling and vanpooling projects funded by CMAQ programs, particularly where the project decreases single-occupancy vehicle use and vehicle miles traveled. Carpooling and vanpooling encourage participants to commute together to and from their workplace.

Emissions rates are primarily based on a national-scale run of the EPA MOVES model. Emission estimates from tools in the CMAQ Toolkit are not intended for use in State Implementation Plans (SIPs) or transportation conformity analyses and do not meet the same requirements necessary for SIP and conformity reporting.

Carpooling

Version date: 8.2019

Emissions Calculator Toolkit		Carpooling			
	Tł	is calculator will estimate the reduction in emissions resulting from	n carpooling.		
Vavigator		INPUT		_	User Guide
<u>Carpooling</u>	 What is your pro Are the pick-up; (2a) What is the Please choose o (3a) What is the (3b) What is the (3b) What is the (4) What share of co (5) On average, how (6) What is the aver 	yject evaluation year? (drop-off locations centralized? average round-trip distance participants drive to the central locations? ne of the following questions to answer: population of commuting workers? number of vehicles participating in the carpool program? <i>Default valu</i> ommuters participate in pool? v many passengers are there per carpool vehicle? age commute distance?	Select Ves 0 es based on nation 9,4% 1 25,2	Enter as roundtrij	set to Default p mileage tage ed p mileage
		OUTPUT		Calculate	Output
	EMISSION REDUCTIONS				
		Pollutant	Total (I kg/	(g/day) day	
	Carbon Monoxide (CO)			0,000	
		0,0	000		
		0,0	000		
	Particulate Matter <2.5 µm (PM _{2.5}) 0,000			000	
		Volatile Organic Compounds (VOC)	0,0	000	
		Carbon Diavido Equivalance (CO. a)	0.0	000	
		Total Energy Consumption (MMBTU)	0,0	000	
	Total Energy Consumption (WWBTO)				

Congestion Mitigation and Air Quality Improvement (CMAQ) Program: Calculation of Emission

Reductions of a Carpooling and Vanpooling Program

Example

Assume that the parameters of a proposed carpooling program are as follows:

- Average round-trip distance participants drive to the central locations: 5 miles
- The total number of people who participated: 120 (including the drivers)
- The average number of passengers in each car: 3 passengers per car (excluding the drivers)
- Total number of participating cars: 30 cars
- Average commute distance: 30 miles

When the above parameters are imputed, the spreadsheet-based tool produces the following output table for the year 2023.

Output Table: Emission Reductions of the Proposed Carpooling Program

Pollutant	Total (kg/day)
Carbon Monoxide (CO)	3,902
Nitrogen Oxide (NOx)	0,079
Particulate Matter <10 μ m (PM ₁₀)	0,018
Particulate Matter <2.5 μm (PM _{2.5})	0,237
Volatile Organic Compounds (VOC)	0,041
Carbon Dioxide Equivalence (CO ₂ e)	693,256
Total Energy Consumption (MMBTU)	9,128

Congestion Mitigation and Air Quality Improvement (CMAQ) Program: Calculation of Emission Reductions of

a Diesel Idle Reduction Technologies Program

Diesel Idle Reduction Technologies

This calculator will estimate the reduction in emissions resulting from use of idle reduction methods, including diesel and battery auxiliary power units (APU), directfired (D-F) heaters, truck stop electrification (TSE), and engine-off idling. This tool is specific to long-haul combination trucks.

	fired (D-	F) heaters, truck	stop electrificat	tion (ISE), and	engine-off idi	ing. This tool is	specific to long-na	iul combination	trucks.	
					INPUT					User Guide
	Not	e: Inputs for th	is tool should b	e specific to t	he vehicles fo	r which idle re	duction method(s) will be applied	d.	
									Reset to	Default Values
	(1) What is your p	project evaluation	n year?		Select]		-		
	(2) What type of the project? Plea	activity data will se select either o	you provide for operating hours		 Annual Operatir Annual Truck Po 	ng (Driving) Hours pulation	ACTIVITY CALCULAT Model Year Group 2006 or earlier	FOR (optional) Default Activity 0	,	
	or truck populatio	on and input <u>ann</u>	ual activity. You		Appual Activit	h.,	2007-2009	0	Calo	ulate Default
	right to determin	e activity by mod	del year group		Enter	hours or trucks	2010-2012	0	Activ	ity Distribution
	based on nationa	I defaults (for us	e in Question 3).				2021-2023	0		
	(3) Use the check mode(s) associat <u>annual</u> activity by in terms of opera fleet, not per true	boxes to select t ed with the proje y model year grou ting hours, pleas ck.	the types of hotel ect. Populate the up. If you are prov e provide data fo	lling operating table with viding activity r the entire		NOTE: Use the the default act between hote <u>NOTE</u> : Select th before procee	"Fill with Default Ac livity from the calcul lling operating mod- he "Check Hotelling ding to Q4.	ctivity Distributio ator. If splitting t es, enter the acti Activity Distribut Fill with	n" button t he activity vity manua ion" butto	o use Ily. h
	Model Year Group	Diesel APU	Battery APU	D-F Heater	TSE	Engine-off	Extended Idle	Di	stribution	
	2006 or earlier							Charlet		
	2007-2009							Activity Di	stribution	
	2010-2012									
	2013-2020					152 7				
	2024-2050									
	TOTAL	0	0	0	0	0	0			
	(4) Indicate what analysis: default annualization ind year that the proj	annualization to (365 days) or you licates the numb ject will operate.	apply to the ir own value. The er of days per	8	 Default (365 Enter my ow 	days) n value		days		
					OUTPUT	Î			Calculat	e Output
T PERFO	RMANCE									
	Annual Activi	ty for Idle Redu	uction Project	Metric 0 0	Total Hotellin Number of Ho Total Vehicle	g Hours ours Operated Miles Travelled		Last Updated	l: 4.25.:	2023 6:24:38 PM
	DUCTIONS									
SION RE	DUCTIONS					1	21976 1 2			
				Pollutant			Fotal g/day			
			Carb	on Monoxide (CO)		0,000			
			Particulate	e Matter <2.5 μ	m (PM _{2.5})		0,000			
			Particulat	e Matter <10 μι	m (PM ₁₀)		0,000			
	Nitrogen Oxides (N		Ox)		0,000					
			Volatile Or	ganic Compour	nds (VOC)	3	0,000			
						1		3		
			Carbon	Dioxide CO ₂ (k	g/day)		0,000			
			Carbon Dioxid	e Equivalent, C	O ₂ e (kg/day)		0,000			
			Total Energy (Consumption (I	MMBTU/day)		0,000			
						1	-			
			Note CO2, CO2e	and Total Energ	gy Consumption	n not calculated j	for projects with			

Congestion Mitigation and Air Quality Improvement (CMAQ) Program: Calculation of Emission

Reductions of a Diesel Idle Reduction Technologies Program

Example

Assume that the parameters of a proposed diesel idle reduction program, which aims at switching from idling the main propulsion engines to alternative power sources, are as follows:

- Project Evaluation Year: 2025
- Type of Activity: Operating Hours
- Annual Activity: 250,000 hours

Once these parameters are inputted, we click the "Calculate Default Activity Distribution" button. This estimates a distribution based on US national averages. The output table for Activity Distribution is shown at the right above.

• Hotelling Activity Type – Engine-off

After the Hotelling Activity Type is determined, the values in the Activity Distribution Table are inputted into the "Activity Calculator".

Clicking the "Calculate Output" button will produce the following tables.

Model Year Group	Default Activity
2006 or earlier	10.979
2007-2009	7.831
2010-2012	12.545
2013-2020	119.631
2021-2023	60.040
2024-2050	38.975

Emission Reductions

Pollutant	Total kg/day
Carbon Monoxide (CO)	22,352
Particulate Matter <2.5 μm (PM _{2.5})	0,409
Particulate Matter <10 μm (PM ₁₀)	0,444
Nitrogen Oxides (NOx)	30,477
Volatile Organic Compounds (VOC)	2,164
Carbon Dioxide CO ₂ (kg/day)	3.999,516
Carbon Dioxide Equivalent, CO ₂ e (kg/day)	4.009,51
Total Energy Consumption (MMBTU/day)	51,463

Activity Distribution Table

Benefit-Cost Analysis Guidance for Discretionary Grant Programs: Emissions Reduction Benefits

Emission	NOx	SOx	PM2.5**	CO ₂
Туре			2.0	-
2022	\$16,600	\$44,300	\$796,700	\$56
2023	\$16,800	\$45,100	\$810,500	\$57
2024	\$17,000	\$46,000	\$824,500	\$58
2025	\$17,200	\$46,900	\$838,800	\$59
2026	\$17,500	\$47,800	\$852,100	\$60
2027	\$17,900	\$48,700	\$865,600	\$61
2028	\$18,200	\$49,500	\$879,400	\$62
2029	\$18,600	\$50,400	\$893,400	\$63
2030	\$18,900	\$51,300	\$907,600	\$65
2031	\$18,900	\$51,300	\$907,600	\$66
2032	\$18,900	\$51,300	\$907,600	\$67
2033	\$18,900	\$51,300	\$907,600	\$68
2034	\$18,900	\$51,300	\$907,600	\$69
2035	\$18,900	\$51,300	\$907,600	\$70
2036	\$18,900	\$51,300	\$907,600	\$72
2037	\$18,900	\$51,300	\$907,600	\$73
2038	\$18,900	\$51,300	\$907,600	\$74
2039	\$18,900	\$51,300	\$907,600	\$75
2040	\$18,900	\$51,300	\$907,600	\$76
2041	\$18,900	\$51,300	\$907,600	\$78
2042	\$18,900	\$51,300	\$907,600	\$79
2043	\$18,900	\$51,300	\$907,600	\$80
2044	\$18,900	\$51,300	\$907,600	\$81
2045	\$18,900	\$51,300	\$907,600	\$82
2046	\$18,900	\$51,300	\$907,600	\$84
2047	\$18,900	\$51,300	\$907,600	\$85
2048	\$18,900	\$51,300	\$907,600	\$86
2049	\$18,900	\$51,300	\$907,600	\$87
2050	\$18,900	\$51,300	\$907,600	\$88
		•	•	

Recommended Monetized Value(s)

Example

Assuming that a new transportation project will lower each of the four emission by 10 metric tons annually; the emission reduction benefit for the year 2040 will be calculated as follow:

NOX *Reduction Benefit* = *Quanity Reduced x Monetized Value in given year* = 10 *metric tons in* 2040 *x* \$18,900/*metric ton* = \$189,000 *in* 2040

SOX *Reduction Benefit* = *Quanity Reduced x Monetized Value in given year* = 10 *metric tons in* 2040 *x* \$51,300/*metric ton* = \$513,000 *in* 2040

PM2.5 Reduction Benefit = *Quanity Reduced x Monetized Value in given year* = 10 *metric tons in* 2040 *x* \$907,600/*metric ton* = \$9,076,000 *in* 2040

CO2 *Reduction Benefit* = *Quanity Reduced x Monetized Value in given year* = 10 *metric tons in* 2040 *x* \$76/*metric ton* = \$760 *in* 2040

TOTAL EMISSION REDUCTION BENEFIT = \$189,000 + \$513,000 + \$9,076,000 + \$760 = \$9,778,760 *in* 2040

Benefit-Cost Analysis Guidance for Discretionary Grant Programs: The Measurement of Pedestrian and Cycling Facility Improvements

Improvement Type	Recommended Value per Person- Mile Walked (2021 \$)
Expand Sidewalk (per foot of added Width)2	\$0.11
Reducing Upslope by 1%	\$1.05
Reducing Traffic Speed by 1 mph (for speeds ≤45 mph)	\$0.09
Reducing Traffic Volume by 1 Vehicle per Hour (for ADT ≤55,000)	\$0.0009

Improvement Type	Recommended Value per Person- Mile Walked (2021 \$)
Install Marked-Crosswalk on	\$0.18
Roadway with Volumes ≥10,000	
Vehicles per Day	
Install Signal for Pedestrian Crossing	\$0.48
on Roadway with Volumes ≥13,000	
Vehicles per Day	

Facility Type	Recommended Value per Cycling Mile (2021 \$)
Cycling Path with At Grade Crossings	\$1.49
Cycling Path with no At Grade Crossings	\$1.87
Dedicated Cycling Lane	\$1.77
Cycling Boulevard/"Sharrow"	\$0.28
Separated Cycle Track	\$1.77

Example

Take a project which will extend a two-mile sidewalk by five feet. The daily average pedestrian trip is 3,000. The monetary value of the benefit to pedestrian walking will be calculated as follows:

Benefit per Mile Walked = Sidewalk Value per Foot of Added *Width x Additional Width* = \$0.11 *per Foot of Added Width x* 5 Feet = \$0.55 per Mile Walked

Benefit to Pedestrians = # of Daily Users x Block Length x Value per Mile Walked x 365 Days= 3,000 Pedestrians x 2 Miles x \$0.55 *per Mile Walked x* 365 *Days* = *\$1,204,500 per Year*

Benefit-Cost Analysis Guidance for Discretionary Grant Programs: The Measurement of Pedestrian and Cycling Facility Improvements

Improvement Type	Recommended Value per Person- Mile Walked (2021 \$)
Expand Sidewalk (per foot of added Width)2	\$0.11
Reducing Upslope by 1%	\$1.05
Reducing Traffic Speed by 1 mph (for speeds ≤45 mph)	\$0.09
Reducing Traffic Volume by 1 Vehicle per Hour (for ADT ≤55,000)	\$0.0009

Improvement Type	Recommended Value per Person- Mile Walked (2021 \$)
Install Marked-Crosswalk on	\$0.18
Roadway with Volumes ≥10,000	
Vehicles per Day	
Install Signal for Pedestrian Crossing	\$0.48
on Roadway with Volumes ≥13,000	
Vehicles per Day	

Facility Type	Recommended Value per Cycling Mile (2021 \$)
Cycling Path with At Grade Crossings	\$1.49
Cycling Path with no At Grade Crossings	\$1.87
Dedicated Cycling Lane	\$1.77
Cycling Boulevard/"Sharrow"	\$0.28
Separated Cycle Track	\$1.77

Example

Assuming that a new on-street cycling lane will be built on a 2-mile street with 100 daily cyclists and having no other parallel facility currently in use. Estimating that an additional 50 daily cyclist trips will be induced after the introduction of the new cycling lane, the daily benefit will be as follows:

Existing User Benefits = # of Cyclists x Bike Lane Value per Cycling Mile x Distance = 100 Cyclists x \$1.77 per Mile x 2 Miles = \$354

Benefits to Additional Users = 1/2 x # of new Cyclists x Bike *Lane Value per Cycling Mile x Distance* = $1/2 \times 50$ *Induced* Cycling Trips x \$1.77 per Mile x 2 Miles = \$88,5

Total Annual Benefits = 365 *x* (354 + 88,5) = \$161,512,5

The current efforts to deal with the environmental effects

The current efforts to deal with the environmental effects: Hybrid and Electric Cars

The current efforts to deal with the environmental effects: Fuel Standards and New Vehicle Technologies

Fuel Economy Standards for New Passenger Vehicles by Country/Region

Car and Truck Corporate Average Fuel Economy (CAFE) and Miles per Gallon (MPG): Model Years 1975-2013

The current efforts to deal with the environmental effects: Airspace Redesign and New Route Developments

escarus

Thank You.

Do you have any questions?

Youtube LinkedIn Twitter Escarus

 ESCARUS (TSKB Sustainability Consultancy)
 Meclisi Mebusan Cad. Karun Çıkmazı Sok. No: 2, 34427 Fındıklı, Beyoğlu İstanbul, Türkiye

➢ info@escarus.com
 ♀ +90 212 334 54 60
 ♀ www.escarus.com